RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2017

FIRST YEAR [BATCH 2016-19] **COMPUTER SCIENCE (General)**

: 26/05/2017 Date Time : 11 am – 1 pm

[Use a separate Answer Book for each group]

Group - A

1.	An	swer any one question :	[1×5]							
	a)	a) Explain the merits and demerits of using a linked list over an array.								
	b) What is strictly binary tree? Find the total number of nodes in a strictly binary tree if the num of leaf nodes is 'n'.									
Answer <u>any two</u> questions from <u>Question Nos. 2 to 5</u> :										
2.	a) b)	In respect of complexity, compare among insertion and selection sort algorithms. Convert $AB - C + DEF - + $ \$ to its infix expression using stack.	[5] [5]							
3.	a) b)	Construct a BST (Binary Search Tree) using following elements. 5, 1, 8, 57, 39, 33, 90, 71, 5, 97 Briefly discuss about Big-Oh and Big-Omega notations in the context of asymptotic time complexity analysis.	. [4] e [6]							
4.	a) b)	 Write C functions to implement the following : i) Insert an element in a linear queue using a singly linked list. ii) Delete the last node from a circular linked list. Construct a binary tree using the in-order and post-order traversals as given below : In order : B C A E D E 	[3] [3]							
		Post order : C B E F D A	[4]							
5.	a) b)	Write down the C function to implement insertion sort on an array containing 'n' elements. Implement push and pop operations on a stack using a singly linked list. Perform the above operations in $0(1)$ time.	[5] e [5]							
		<u>Group - B</u>								
6.	An	swer <u>any one</u> question :	[1×5]							
	a)	i) What are the necessary conditions for deadlock?	[2]							
		ii) Discuss the role of a semaphore in solving the critical section problem.	[3]							
	b)	i) Explain the term 'Page fault'.	[2]							
		ii) What is virtual memory and what are its advantages? [1.	5+1.5]							
An	swer	r <u>any two</u> questions from <u>Question Nos. 7 to 10</u> :	[2×10]							
7.	a) b)	Explain the differences between paging and segmentation in context with memory management. Make a comparative study between preemptive and non-preemptive process scheduling algorithms.	[4] g [3]							

- c) Discuss process life cycle with a suitable diagram.
- Consider a system with five processes P0, P1, P2, P3 and P4 and four resource types A, B, C and 8. a) D. Suppose that we have the following snapshot of resource allocation state of the system : [5]

[3]

Paper : II

Full Marks : 50

			Allocation				Max			Available			
			А	В	С	D	Α	В	С	D	ABCD		
		P0	0	0	1	2	0	0	1	2	1 5 2 0		
		P1	1	0	0	0	1	7	5	0			
		P2	1	3	5	4	2	3	5	6			
		P3	0	6	3	2	0	6	5	2			
		P4	0	0	1	4	0	6	5	6			
		Check if the system is in safe state using Banker's algorithm.								hm.			
	b)	With proper example, distinguish between logical and physical address space.								ysical address space.	[3]		
	c)	What is Belady's anomaly?											[2]
9.	a)	What is a race condition? What are all the conditions that should hold good for its solution								t should hold good for its solution?	[4]		
	b)	b) Write short notes on :								C .	[3+3]		
		i) Priority scheduling											
		ii) Int	er-p	roc	ess	comn	nun	ica	tior	ı			
10.	a)	Discuss	s dif	fere	ent	file ac	ces	s n	neth	ods			[6]
	b)	Explain	ı abs	solu	te	and re	lati	ve	pat	h na	e with suitable exa	amples.	[2+2]

- × -

9.